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We present an extension of the discrete sources method for solving the time-harmonic 
Maxwell equations accounting for the non-local effect. The developed numerical scheme 
coupling the non-local hydrodynamic Drude model and the generalized non-local optical 
response model is described in detail. Numerical results computed for a single non-
spherical particle and a linear dimer are presented. Our results demonstrate that the 
discrete sources method can be efficiently used to model the non-local effect in a wide 
range of 3D scattering problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Nanophotonics is an active research field concerned with the study of interactions between nanometer scale structures 
and light, including near-infrared, visible, and ultraviolet light. Owing to the rapid progress in fabrication, characterization, 
and surface functionalization technologies there are many potential applications including invisibility cloaking, nanoanten-
nas, metamaterials, novel biological detection technologies, as well as, new optical storage concepts [1,2]. Plasmonics in 
nanophotonics deals with the study of the collective oscillations of free electrons in nobel metals that can be resonantly 
excited at optical frequencies. These oscillations exhibit unique optical properties across the light spectrum and have been 
extensively studied for their ability to enhance the incident field intensity by several orders of magnitude [3].

At nanometer or even sub-nanometer scale, metallic structures operating at optical frequencies demonstrate interesting 
features that are increasingly exploited in the area of nanophotonics [4]. To be able to optimize these enhanced properties 
for a specific application, appropriate modeling tools are required, in particular, to describe the reaction of the electrons 
in the metal subjected to an incident electromagnetic wave [5]. If the feature size is lower than the mean free path of the 
conduction electrons, the electron scattering rate at the feature surface increase. At these scales and with optical frequencies 
considered, the classical description of the propagation of an electromagnetic wave is no longer valid, because additionally, 
the electric spatial dispersion of the metal has to be taken into account [6,7]. At sub-nanometer scales, it appears that 
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quantum effects must be taken into account because the electron behavior depends not only on the field at the position of 
the electron (local response approximation (LRA)), but also on the neighboring field distribution (non-local effect) [8]. If the 
structure size is less than approximately 10 nm, or there is a sharp variation in the surface topography, the classical Maxwell 
theory is no longer sufficient and a new approach going beyond classical electromagnetics that can describe the occurring 
physical effects is required. Currently, the most popular approaches accounting for the non-local effect are the Hydrodynamic 
Drude theory (HDD) [9,10] and the Generalized Non-local Optical Response (GNOR) concept that consider the equation for 
the free electron motion inside the particle, and for the electron diffusion in the case of GNOR [11–13]. Besides the theories 
mentioned above, some approximate approaches that enable to treat plasmonic nanostructures accounting for the NLE are 
also available [14–16].

Except for some highly symmetric structures geometries (circular cylinders or spheres), analytical solutions to the 
Maxwell equations are not available. Thus, a numerical treatment is an important aspect of nanophotonics research. Nu-
merical experiments help to find new promising nano-systems and geometries prior to real fabrication, to obtain optimized 
parameters, to visualize the field distributions, to investigate the dominant contribution to a phenomenon under consid-
eration, and finally, to interpret the results of experimental observations [4]. To provide reliable, accurate, and controllable 
simulation results, a computer based electromagnetic model should account for all features of interaction in the plasmonic 
structures down to ȧngstrom dimension. Besides the computation time and memory requirements, a numerical method is 
characterized by the ease of implementation, the complexity of discretization, and versatility. Some numerical methods can 
be applied to handle a broad range of plasmonic systems, while others are very efficient for some specific problems. In fact, 
for a physicist or an engineer, a compromise between the solvable spectrum of problems and the availability of specific 
numerical methods has usually to be found [17].

The numerical methods that are commonly used in plasmonics can be divided into two groups.

1. Direct methods which are directly applicable to the system of Maxwell equations. In this category, we include the 
Finite Difference Time Domain (FDTD) method [18] working in the time domain, and the Finite Elements Method (FEM) 
[19] operating in the frequency domain. The FDTD method is one of the most popular methods in nanophotonics 
because of its easy concept and its ability to handle a wide variety of problems. In this method, the time and the 
space are discretized, and the spatial and temporal derivatives appearing in the Maxwell equations are replaced by 
their finite-difference counterparts. More recently, the Discontinuous Galerkin Time-Domain (DGTD) method has drawn 
a lot of attention because of several appealing features, as for example, an ease of adaptation to complex geometries 
and material composition, high-order accuracy, and natural parallelism [20]. The FEM is another popular method in 
nanophotonics, which allows for an accurate computation of the electromagnetic field in the frequency domain. In very 
recent years, the Hybridizable Discontinuous Galerkin (HDG) method appears to be a promising numerical method for 
time-harmonic problems because it inherits nearly all the advantages of the discontinuous Galerkin methods while 
leading to a computational complexity similar to FEM [21,22].

2. Semi-analytical methods which use the Green theorem to reduce the boundary value problem to an inhomogeneous 
domain. In this category, we include (i) volume based methods, as for example, the Volume Integral Equations (VIE) 
method [23] and the Discrete Dipole Approximation (DDA) [24], and (ii) surface based methods, as for example, the 
Surface Integral Equations (SIE) method [17], the Boundary Element Method (BEM) [25], the T-matrix approach [26], 
the Multiple MultiPole (MMP) Method [27], and the Discrete Sources Method (DSM) [28].

For nanophotonic structures consisting of homogeneous plasmonic particles, surface based methods seem to be the most 
appropriate [17,27]. The reason is that when accounting for the non-local response, these methods (i) are able to solve a 
vector Helmholtz equation with a very large wavenumber, and (ii) can handle very small discretization steps. In this regard, 
we like to mention that the discretization is determined by the Fermi wavelength; for Ag particle, the Fermi wavelength 
v F = 0.52 nm requires a discretization step smaller than 0.05 nm to achieve a reasonable accuracy [29]. At present, there 
are a number of papers in which the numerical scheme for analyzing nanophotonic structures with NLE is described in 
detail [30–33], but at the same time, most of the associated numerical results have been obtained for cylindrical structures, 
that is, for the case of a 2D scattering problem only.

The Discrete Sources Method (DSM) we developed is a semi-analytical surface based method, in which the electromag-
netic fields are constructed as linear combinations of fields of discrete sources (DS), whose amplitudes are determined from 
the boundary conditions enforced at the particle surfaces. As compared to other surface-based approaches, the numerical 
scheme of the DSM has some preferences: (i) it does not require any mesh generation or an integration procedure over the 
particle surface, (ii) it provides the near and far fields in clear analytical form, (iii) it simultaneously solves the scattering 
problem for all incident directions and polarizations at once, (iv) it allows to handle particles with high refractive indices by 
using different numbers of discrete sources for representing the scattered and internal fields, and (v) it ensures an exclusive 
opportunity to estimate the computational errors via the residual of the surface fields [28]. The resulting computer models 
are low in computational demand, flexible, and easy to use. These theoretical and numerical advantages recommend the 
DSM for analyzing 3D plasmonic nanostructures in the presence of NLE [29,34].

In this paper we present how non-local models are handled in the framework of the discrete sources method (Sections 2
and 3), the corresponding numerical scheme (Section 2), and finally, some computational results for spheroids and dimers 
of spheroids.
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Fig. 1. Scattering problem geometry.

2. Non-local models

We consider scattering of an electromagnetic plane wave (E0, H0) by an axisymmetric homogeneous metallic particle 
placed in an isotropic homogeneous dielectric medium as shown in Fig. 1. The particle occupies the domain Di with 
smooth boundary Si = ∂ Di . By assumption, the media are nonmagnetic, and the axis of symmetry of the particle is aligned 
with the O z axis. The incident plane electromagnetic wave propagates in the O xz plane along a direction which encloses 
the angle π − θ0 with respect to the O z axis.

A model for simulating the non-local effect can be characterized as follows.

1. The local-response Ohm law in the metallic particle Ji(r) = σEi(r) is corrected for non-local dynamics as [7]

ξ2

εb
∇[∇ · Ji(r)] + Ji(r) = σEi(r), (1)

where for a time dependence of the fields we use exp(jωt),

ξ2
HDD = εb

[ β2

ω(ω − jγ )

]
, ξ2

GNOR = εb

[ β2

ω(ω − jγ )
+ j

D

ω

]
, (2)

where εb the permittivity associated to bound charges, ω the frequency, β2 = (3/5)v2
F , vF the Fermi velocity, γ the 

Drude damping rate, D the diffusion constant, and σ the Drude conductivity.
2. The Maxwell equation for the magnetic field reads as

∇ × Hi(r) = jωε0[εi + ξ2∇(∇·)]Ei(r), (3)

where

εi = εb − ω2
p

ω2 − jγω
(4)

is the Drude permittivity, ε0 the vacuum permittivity, and ωp the plasma frequency of the metal.
3. The field in the metal Ei sums the contributions of a divergence-free transverse field ETi and a curl-free longitudinal 

field ELi solving the vector Helmholtz equation with wavenumbers k2
T = k2

0εi and k2
L = εi/ξ

2, respectively, where 
k0 = ω

c is the wavenumber in vacuum.
4. The amplitude of the longitudinal wave is computed from the additional boundary condition [7,16]

εen̂ · [Ee(r) + E0(r)] = εbn̂ · Ei(r), (5)

which is imposed at the interface between the dielectric background medium and the metallic particle. Here, εe is the 
permittivity of the background dielectric medium, Ee is the scattered field, and E0 is the incident field; thus Ee + E0
is the total field in the background dielectric medium. This boundary condition is used together with the continuity of 
the tangential components of the electric and magnetic fields at the interface.

In the framework of LRA, when non-local effects are neglected, the conventional equations are obtained by setting ξ = 0 in 
(1) and (3), and by ignoring the longitudinal field (and so, the additional boundary condition (5)).

Considering the scattering problem illustrated in Fig. 1, we are faced with the following boundary value problem: Given 
the incident electromagnetic field (E0, H0), compute the scattered field (Ee, He) in De = R3 \ Di and the internal field 
(Ei, Hi) in Di , satisfying the Maxwell equations



360 Y. Eremin et al. / Journal of Computational Physics 388 (2019) 357–370
∇ × He = jk0εeEe, ∇ × Ee = −jk0He, in De (6)

∇ × Hi = jk0[εi + ξ2∇(∇·)]Ei, ∇ × Ei = −jk0Hi, in Di, (7)

and the boundary conditions at the particle surface Si ,

n̂ × (Ei − Ee) = n̂ × E0, (8)

n̂ × (Hi − He) = n̂ × H0, (9)

εbn̂ · Ei = εen̂ · (Ee + E0). (10)

In addition, the scattered field must satisfy the Silver-Müller radiation condition. As already mentioned, the field inside the 
particle is decomposed as

Ei = ETi + ELi, (11)

where ETi and ELi are respectively, the transverse and longitudinal fields satisfying the following conditions

∇ · ETi(r,ω) = 0 and ∇ × ELi(r,ω) = 0.

3. Discrete sources method

In the frame of the discrete sources method, the electromagnetic fields are constructed as finite linear combinations of 
the fields produced by dipoles and multipoles distributed over an axis of symmetry 0Z inside the particle. Thus, the solution 
satisfies the Maxwell equations and the radiation conditions analytically. The unknown amplitudes of the discrete sources 
are determined from the boundary conditions enforced at the particle surface Si . In this section we describe a modified 
scheme of the discrete sources method for modeling the nonlocal optical response.

For the incident electromagnetic plane wave

E0(r) = ê0e−jke·r (12)

propagating along the direction (π − θ0, π) and being characterized by the wave vector ke = kek̂e , ke = k0
√

εe and polar-
ization unit vector ̂e0, the corresponding P- and S-polarized incident fields are given respectively, by

EP0 (r) = (cos θ0̂ex + sin θ0̂ez)ψ(x, z), (13)

HP
0 (r) = −√

εêeyψ(x, z), (14)

and

ES0 (r) = êyψ(x, z), (15)

HS
0 (r) = √

εe(cos θ0̂ex + sin θ0̂ez)ψ(x, z), (16)

where (̂ex, ̂ey, ̂ez) are the Cartesian unit vectors and

ψ(x, z) = e−jke(x sin θ0−z cos θ0). (17)

For an axisymmetric particle, the P- and S-polarized excitations are treated separately. To account for axial symmetry, we 
expand each polarized plane wave into a Fourier series in the azimuthal angle ϕ by using the basic result

e±jx cos ϕ =
∞∑

m=0

(2 − δm0)(±j)m Jm(x) cos mϕ, (18)

where Jm are the cylindrical Bessel functions, and δm0 the Kronecker delta symbol. The scattering problem then decouples 
over the azimuthal modes m, and a separate solution for each m is obtained.

The discrete sources are placed on the axis O z (the axis of symmetry of the particle), and in this regard, we denote by 
{zen }Nm

e
n=1 the positions of the discrete sources for the representation of scattered field, by {zTn }Nm

T
n=1 the positions of the discrete 

sources for representing the transverse field inside the particle, and finally, by {zLn }Nm
L

n=1 the positions of the discrete sources 
for representing the longitudinal field inside the particle. Note that the numbers of discrete sources Nm

e , Nm
T and Nm

L may 
be different and that they depend on the azimuthal mode number m.

For approximating the transverse field, the fields of the discrete sources are constructed from the vector potentials A1
mn , 

A2
mn , and A3

mn , defined by:
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A1e,i
mn (r) = �e,i

m (�, ze,T
n ) cos[(m + 1)ϕ ]̂eϕ

− �e,i
m (�, ze,T

n ) sin[(m + 1)ϕ ]̂eρ, (19)

A2e,i
mn (r) = �e,i

m (�, ze,T
n ) sin[(m + 1)ϕ ]̂eϕ

+ �e,i
m (�, ze,T

n ) cos[(m + 1)ϕ ]̂eρ, (20)

A3e,i
mn (r) = �

e,i
0 (�, ze,T

n )̂ez, (21)

where

�e
m(�, zen ) = h(2)

m (keRzen )
( ρ

Rzen

)m
, (22)

�i
m(�, zTn ) = jm(kTRzTn )

( ρ

RzTn

)m
, (23)

kT = k0
√

εi , � = (ρ, z), ρ2 = x2 + y2, and

R2
zn

= ρ2 + (z − zn)
2. (24)

For approximating the longitudinal field, the fields of the discrete sources are constructed from the scalar potentials �mn

and �n; for a P-polarized excitation, they defined by

�mn(r) = �m+1(�, zLn ) cos[(m + 1)ϕ], (25)

�n(r) = �0(�, zLn ), (26)

where

�m(�, zLn ) = jm(kLRzLn )
( ρ

RzLn

)m
, (27)

and k2
L = εi/ξ

2. In this regard, for a P-polarized excitation, the approximate solution is given by

EN
e,Ti(r) =

M∑
m=0

Nm
e,T∑

n=1

pe,T
mn

j

k0εe,i
∇ × ∇ × A1e,i

mn (r) + qe,T
mn

j

εe,i
∇ × A2e,i

mn (r)

+
N0
e,T∑

n=1

re,T
n

j

k0εe,i
∇ × ∇ × A3e,i

n (r), (28)

EN
Li(r) =

M∑
m=0

Nm
L∑

n=1

pLmn∇�mn(r) +
N0
L∑

n=1

rLn ∇�n(r), (29)

HN
e,i(r) = j

k0
∇ × EN

e,i(r), (30)

where M is the maximum number of azimuthal modes. Similarly, for an S-polarized excitation, we use the solution repre-
sentation

EN
e,Ti(r) =

M∑
m=0

Nm
e,T∑

n=1

pe,T
mn

j

k0εe,i
∇ × ∇ × A2e,i

mn (r) + qe,T
mn

j

εe,i
∇ × A1e,i

mn (r)

+
N0
e,T∑

n=1

re,T
n

j

εe,i
∇ × A3e,i

n (r), (31)

EN
Li(r) =

M∑
m=0

Nm
Li∑

n=1

pLmn∇�mn(r), (32)

HN
e,i(r) = j

k0
∇ × EN

e,i(r), (33)

where the scalar potential �mn is now defined by
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�mn(r) = �m+1(�, zLn ) sin[(m + 1)ϕ], (34)

with �m(�, zLn ) as in (27).
Note that the vector functions in terms of which the fields in (28)-(30) and (31)-(33) are expressed, are the so-called 

lowest order distributed multipoles [35]. The completeness of this system of vector functions in the mean square norm at 
the particle surface Si has been proven in [35]. This property guarantees the convergence of the approximate solution to 
the exact solution in any closed domain outside the particle, and in particular, at the unit sphere.

Some remarks are in order:

1. N is a multi-index incorporating both the maximum number of azimuthal modes M , and the number of discrete 
sources Nm

e , Nm
T and Nm

L .
2. From (30) and (33) it is apparent that only the transverse field ETi contributes to the magnetic field Hi inside particle i.
3. In the case of an S-polarized excitation, the azimuthal independent harmonic does not contain the nonlocal term ∇�n(r)

appearing in (29). The reason is that in this case, there is no normal component of the electric field, and so, the 
additional boundary condition is not required.

As the electromagnetic fields given by (28)-(30) and (31)-(33) solve the Maxwell equations (6)-(7), we have to determine 
the amplitudes of the discrete sources

{pe,T
mn , pLmn,qe,T

mn , re,T
n , rLn }

such that the boundary conditions (8)-(10) are fulfilled. By means of the generalized point matching technique, we obtain 
the following relations for computation of the amplitudes:

n̂ ×
2π∫
0

[ETi(�l,ϕ) + ELi(�l,ϕ) − Ee(�l,ϕ)]e−jmϕdϕ

= n̂ ×
2π∫
0

E0(�l,ϕ)e−jmϕdϕ, (35)

n̂ ×
2π∫
0

[Hi(�l,ϕ) − He(�l,ϕ)]e−jmϕdϕ

= n̂i ×
2π∫
0

H0(�l,ϕ)e−jmϕdϕ, (36)

n̂ ·
2π∫
0

[εbETi(�l,ϕ) + εbELi(�l,ϕ) − εeEe(�l,ϕ)]e−jmϕdϕ

= n̂ ·
2π∫
0

εeE0(�l,ϕ)e−jmϕdϕ, (37)

where {�l}K
l=1 is the set of matching points distributed in the azimuthal plane ϕ = const over the surface meridian of the 

particle. For each m, the numbers of discrete sources and matching points are chosen as

2Nm
e + 2Nm

Ti + Nm
Li < 5K , (38)

in which case, we are led to an overdetermined system of equations for the amplitudes of the discrete sources. The system 
of equations is solved by QR matrix factorization for a given set of incident angles θ0 , and simultaneously, for both P- and 
S-polarized excitations.

Once the amplitudes of the discrete sources are known, the components of the far-field pattern

F(θ,ϕ) = Fθ (θ,ϕ)̂eϑ + Fϕ(θ,ϕ)̂eϕ, (39)

defined through the relation

Ee(r) = e−jker

F(θ,ϕ) + o
(1)

, r → ∞, (40)

r r
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are computed for a P-polarized excitation as

F P
θ (θ,ϕ) = jke

M∑
m=0

(j sin θ)m cos[(m + 1)ϕ]
Nm
e∑

n=1

(pemn cos θ + qemn)e−jkezen cos θ

− jke sin θ

N0
e∑

n=1

ren e−jkezen cos θ , (41)

F P
ϕ (θ,ϕ) = −jke

M∑
m=0

(j sin θ)m sin[(m + 1)ϕ]
Nm
e∑

n=1

(pemn + qemn cos θ)e−jkezen cos θ (42)

and for an S-polarized excitation as

FSθ (θ,ϕ) = jke

M∑
m=0

(j sin θ)m sin[(m + 1)ϕ]
Nm
e∑

n=1

(pemn cos θ − qemn)e−jkezen cos θ (43)

FSϕ(θ,ϕ) = jke

M∑
m=0

(j sin θ)m cos[(m + 1)ϕ]
Nm
e∑

n=1

(pemn cos θ − qemn)e−jkezen cos θ

+ jke sin θ

N0
e∑

n=1

ren e−jkezen cos θ . (44)

The differential scattering cross section (DCS) is then calculated as

σ P,S(θ,ϕ) = |FP,S
θ (θ,ϕ)|2 + |FP,S

ϕ (θ,ϕ)|2, (45)

the scattering cross section (SCS) as

σ P,S
scs =

2π∫
0

π∫
0

σ P ,S(θ,ϕ) sin θdθdϕ, (46)

and the extinction cross section for a P- and an S-polarized excitation as

σ P
ext = −4π

ke
Im[FPθ (π − θ0,π)] (47)

and

σ S
ext = 4π

ke
Im[FSϕ(π − θ0,π)], (48)

respectively. From (41)-(44) it is readily seen that the components of the far-field pattern are expressed by finite linear 
combinations of elementary functions, and there is no integration procedure is required for their computation. Besides, the 
errors in the solution can be estimated by computing the residual norm of the surface fields at the particle surface Si .

4. Numerical scheme

In this section we describe the numerical scheme of the discrete sources method. The matrix equations corresponding 
to the azimuthal-dependent boundary conditions (35)-(37) are⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j
k0εi

Wmi
1
εi

Xmi TmL − j
k0εe

Wme − 1
εe

Xme

j
k0εi

Ymi
1
εi

Vmi UmL − j
k0εe

Yme − 1
εe

Vme

jεb
k0εi

Wmi
εb
εi
Xmi εbTmL − j

k0
Wme −Xme

−Xmi
j

k0εi
Wmi 0 Xme − j

k0εe
Wme

−Vmi
j

k0εi
Ymi 0 Vme − j

k0εe
Yme

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
pmT

qmT

pmL

pme

qme

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

EP0m,τ

−EP0m,ϕ

EP0m,n

HP
0m,τ

HP
0m,ϕ

⎤⎥⎥⎥⎥⎥⎥⎦ (49)

for a P-polarized excitation, and
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j
k0εi

Wmi − 1
εi

Xmi TmL − j
k0εe

Wme
1
εe

Xme

j
k0εi

Ymi − 1
εi

Vmi UmL − j
k0εe

Yme
1
εe

Vme

jεb
k0εi

Wmi − εb
εi
Xmi εbTmL − j

k0
Wme Xme

Xmi
j

k0εi
Wmi 0 −Xme − j

k0εe
Wme

Vmi
j

k0εi
Ymi 0 −Vme − j

k0εe
Yme

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
pmT

qmT

pmL

pme

qme

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ES0m,τ

E S
0m,ϕ

ES0m,n

HS
0m,τ

HS
0m,ϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(50)

for an S-polarized excitation. In (49) and (50) we introduced the matrices Wme,i =
[

we,i
mln

]
, Xme,i =

[
xe,i

mln

]
, Yme,i =

[
ye,i

mln

]
, 

Vme,i =
[

ve,i
mln

]
, TmL = [tLmln], and UmL = [uLmln] by

we,i
mln = α(�l)

[
k2
e,T�

e,i
m+2(�l, ze,T

n ) − ke,T
m + 1

ρl
�
e,i
m+1(�l, ze,T

n ) + k2
e,T�

e,i
m (�l, ze,T

n )
]

+ β(�l)k
2
e,T

zl − ze,T
n

ρl
�
e,i
m+1(�l, ze,T

n ),

xe,i
mln = α(�l)ke,T

zl − ze,T
n

ρl
�
e,i
m+1(�l, ze,T

n ) − β(�l)ke,T�
e,i
m+1(�l, ze,T

n ),

ye,i
mln = −ke,T

m + 1

ρl
�
e,i
m+1(�l, ze,T

n ) + k2
e,T�

e,i
m (�l, ze,T

n ),

ve,i
mln = ke,T

zl − ze,T
n

ρl
�
e,i
m+1(�l, ze,T

n ),

tLmln = α(�l)
[m + 1

ρl
�m+1(�l, zLn ) − kL�m+2(�l, zLn )

]
− β(�l)kL

zl − zLn
ρl

�m+2(�l, zLn ),

uLmln = m + 1

ρl
�m+1(�l, zLn )

where τ̂ (�l) = α(�l)�̂ + β(�l )̂z and n̂(�l) = β(�l)�̂ − α(�l )̂z are the tangential and normal unit vectors to the meridian of 
the particle surface at the matching point �l . Moreover, we introduced the amplitude vectors pme,T,L = [pe,T,L

mn ] and qme,T =
[qe,T

mn ], and the vectors associated to the incident field EP,S
0m,τ = [eP,S

0ml,τ ], EP,S
0m,n = [eP,S

0ml,n], EP,S
0m,ϕ = [eP,S

0ml,ϕ], HP,S
0m,τ = [hP,S

0ml,τ ], 
and HP,S

0m,ϕ = [hP,S
0ml,ϕ] by

eP0ml,τ = ζmlψml,

eP0ml,n = ζmlψml,

eP0ml,ϕ = κ+
mlψml cos θ0,

hP0ml,τ = −√
εeα(�l)κ

+
mlψml,

hP0ml,ϕ = −√
εeκ

−
mlψml,

and

eS0ml,τ = α(�l)κ
+
mlψml,

eS0ml,n = β(�l)κ
+
mlψml,

eS0ml,ϕ = κ−
mlψml,

hS0ml,τ = √
εeζmlψml,

hS0ml,ϕ = √
εeκ

+
mlψml cos θ0,

where (xn, xτ , xϕ) are the coordinates of a vector x in a local orthonormal system (̂n, ̂τ , ̂ϕ) attached to the matching point 
�l , and
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κ±
ml = Jm(keρl sin θ0) ± Jm+2(keρl sin θ0),

ζml = α(�l)κ
−
ml cos θ0 − 2jβ(�l) Jm+1(keρl sin θ0) sin θ0,

ζml = β(�l)κ
−
ml cos θ0 + 2jα(�l) Jm+1(keρl sin θ0) sin θ0,

ψml = (−j)m exp(−jkezl cos θl).

The matrices Wme,i , Xme,i , and TmL can be obtained from the matrices Wme,i , Xme,i , and TmL by interchanging the 
tangential and the normal unit vectors. For example, for Wme,i = Wme,i(α, β) and Wme,i = Wme,i(α, β), we have 
Wme,i(α, β) = Wme,i(β, −α). Comparing (49) and (50) it is easy to see that the solutions for both polarized excitations can 
be obtained by solving two systems of equations with the same matrix; by making minor changes in the amplitude vectors 
and the vectors associated to the incident field, the system of equations for an S-polarized excitation reads as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

j
k0εi

Wmi
1
εi

Xmi TmL − j
k0εe

Wme − 1
εe

Xme

j
k0εi

Ymi
1
εi

Vmi UmL − j
k0εe

Yme − 1
εe

Vme

jεb
k0εi

Wmi
εb
εi
Xmi εbTmL − j

k0
Wme −Xme

−Xmi
j

k0εi
Wmi 0 Xme − j

k0εe
Wme

−Vmi
j

k0εi
Ymi 0 Vme − j

k0εe
Yme

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
pmT

−qmT

pmL

pme

−qme

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

ES0m,τ

−ES0m,ϕ

ES0m,n

−HS
0m,τ

−HS
0m,ϕ

⎤⎥⎥⎥⎥⎥⎥⎦ (51)

For the azimuthal-independent boundary conditions, the matrix equations for P- and S-polarized excitations are⎡⎢⎢⎣
j

k0εi
W i T L − j

k0εe
W e

jεb
k0εi

Wi εbT L − j
k0
We

V i 0 −V e

⎤⎥⎥⎦
⎡⎢⎣ rT

rL
re

⎤⎥⎦ =
⎡⎢⎣ EP0,τ

EP0,n

HP
0,ϕ

⎤⎥⎦ (52)

and [ 1
εi

V i − 1
εe

V e

j
k0εi

W i − j
k0εe

W e

][
rT
re

]
=

[
ES0,ϕ

HS
0,τ

]
, (53)

respectively. In (52) and (53), the matrices W e,i =
[

we,i
ln

]
, V e,i =

[
ve,i

ln

]
and T L = [tLln] are defined by

we,i
ln = β(�l)

[
k2
e,T

(zl − ze,T
n )2

ρ2
l

�
e,i
2 (�l, ze,T

n ) + ke,T

ρl
�
e,i
1 (�l, ze,T

n ) + k2
e,T�

e,i
0 (�l, ze,T

n )
]
,

+ α(�l)k
2
e,T

zl − ze,T
n

ρl
�
e,i
2 (�l, ze,T

n ),

ve,i
ln = ke,T�

e,i
1 (�l, ze,T

n ),

tLln = −kL
[
α(�l) + β(�l)

zl − zLn
ρl

]
�1(�l, zLn ),

re,T and rL are the amplitude vectors re,T = [re,T
n ] and rL = [rLn ], respectively, and the vectors associated to the incident 

field EP0,τ = [eP0l,τ ], EP0,n = [eP0l,n], ES0,ϕ = [eS0l,ϕ], HS
0,τ = [hS0l,τ ], and HP

0,ϕ = [hP0l,ϕ] are defined by

eP0l,τ = [jα(�l) cos θ0 J1(keρl sin θ0) − β(�l) sin θ0 J0(keρl sin θ0)]ψ0l,

eP0l,n = [jβ(�l) cos θ0 J1(keρl sin θ0) + α(�l) sin θ0 J0(keρl sin θ0)]ψ0l,

hP0l,ϕ = −j
√

εe J1(keρl sin θ0)ψ0l,

eS0l,ϕ = j J1(keρl sin θ0)ψ0l,

hS0l,τ = −√
εe

[
jα(�l) cos θ0 J1(keρl sin θ0) − β(�l) sin θ0 J0(keρl sin θ0)

]
ψ0l,

with

ψ0l = exp(−jkezl cos θl).

As before, the matrices We,i can be obtained from the matrices W e,i by interchanging the tangential and the normal unit 
vectors.
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The numerical scheme of the discrete sources method involves the following steps.

1. Estimate the number of Fourier harmonics M by imposing that the relative approximation error in (18) is less than
0.05%; M depends on the particle size in the XY plane, the wavenumber of the background medium ke , and the 
incident angle θ0 (which is close to 90◦).

2. Evaluate the number of matching points K distributed over the surface meridian; K depends on the exciting wavelength, 
the meridian length, and the longitudinal wavenumber kL . Generate the set of the matching points {�l}K

l=1, and compute 
the corresponding tangential unit vectors {τ̂ l}K

l=1.
3. For the azimuthal mode m, chose the number of discrete sources Nm

e , Nm
T , and Nm

L . The numbers of discrete sources 
for representing the scattered and internal fields can be different; as a rule, their values are between K/7 − K/3. 
The coordinates of the discrete sources are located either on the axis of symmetry O z, or in the adjoined complex 
plane [35].

4. For the azimuthal-dependent harmonics, compute the matrix (51), factorize it by using the QR algorithm, calculate the 
vectors corresponding to the incident field, and for a specified set of incident angles, determine the amplitudes of the 
discrete sources {pe,T

mn , pLmn, q
e,T
mn }.

5. For the azimuthal-independent harmonics, apply the same technique to the matrices (52) and (53), and determine the 
amplitudes of the discrete sources {re,T

n , rLn }.
6. Compute the scattering characteristics, and estimate the residual of the surface fields in mean square norm at the 

particle surface if it is required.

We conclude this section by presenting the modification of the above numerical scheme in the case of a linear dimer. A 
linear dimmer consists of two axisymmetric particles deposited on the O z axis (the axis of symmetry of both particles). 
The domains of the particles are D1

i and D2
i , and their surfaces are denoted by S1

i and S2
i . In this case, the corresponding 

boundary conditions enforced at S1
i and S2

i are

n̂1,2 × [E1,2
i − (E1

e + E2
e)] = n̂1,2 × E0, (54)

n̂1,2 × [H1,2
i − (H1

e + H2
e)] = n̂12 × H0, (55)

εbn̂1,2 · E1,2
i = εen̂1,2 · [(E1

e + E2
e) + E0]. (56)

From (54)-(56) it is apparent that the electromagnetic interaction between the particles is through the scattered fields only. 
Following the procedure described above, we obtain an azimuthal-dependent matrix equation which is similar to (49). To 
present this matrix equation in full detail we introduce the matrices

E j
mi =

⎡⎢⎢⎣
j

k0εi
W j

mi
1
εi

X j
mi T j

mL

j
k0εi

Y j
mi

1
εi

V j
mi U j

mL

jεb
k0εi

W j
mi

εb
εi
X j

mi εbT j
mL

⎤⎥⎥⎦ , E j
me =

⎡⎢⎢⎣
j

k0εe
W j

me
1
εe

X j
me

j
k0εe

Y j
me

1
εe

V j
me

j
k0
W j

me X j
me

⎤⎥⎥⎦ , (57)

and

H j
me,i =

⎡⎣ −X j
me,i

j
k0εe,i

W j
me,i

−V j
me,i

j
k0εe,i

Y j
me,i

⎤⎦ .

Here, the index j = 1, 2 referrers to the particle j with domain D j
i and surface S j

i . In terms E j
me,i and H j

me,i , the matrix 
associated to the dimer is⎡⎢⎢⎢⎣

E1
mi 0 −E1

me −E2
me

H1
mi 0 −H1

me −H2
me

0 E2
mi −E1

me −E2
me

0 H2
mi −H1

me −H2
me

⎤⎥⎥⎥⎦ . (58)

Thus, the first two lines correspond to the matching points distributed over the meridian of Si
i while the last two lines are 

associated to S2
i . Similar representations can be obtained for the azimuthal-independent matrix equations (52) and (53).

5. Numerical analysis

Prior to presenting results for nonspherical particles we like to demonstrate the validity of the developed DSM model by 
comparing to an extended Mie theory. Actually, comparison of the results between the DSM model and the analytic solution 
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Fig. 2. Scattering cross sections vs wavelength computed by GNOR-DSM and GNOR-Mie for a 5 nm Ag sphere. The parameters are h̄ωp = 8.99 eV, h̄γ =
0.025 eV, vF = 1.39 μm/s, D = 3.61 · 108 μm2/s.

Fig. 3. Extinction cross sections vs exciting wavelength λ computed by LRA and GNOR. The geometrical parameters are r = b/a and θ0 = 00. The background 
medium is water (ne = √

εe = 1.33). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

based on extension of Mie theory incorporated GNOR (based on Raza [39]) for a Ag sphere D = 5 nm can be seen at Fig. 2. 
The parameters of the Ag sphere have chosen from Raza et al. [12]

h̄ωp = 8.99 eV, h̄γ = 0.025 eV, vF = 1.39 μm/s, D = 3.61 · 108 μm2/s.

Fig. 2 demonstrates very good agreement between these two methods.
To demonstrate the capability of the proposed method we analyze the scattering by plasmonic metallic spheroids. We 

start with an oblate spheroid which surface can be described in the cylindrical coordinate system as ρ2

b2 + z2

a2 = 1, b > a. The 
oblate spheroid has an equivolume diameter of Dp = 15 nm. The material of the spheroid is gold (Au). For this metal, the 
frequency dependent refractive indices ni = √

εi are taken from [36]. We use the GNOR model as NLE and the correspond-
ing parameters for Au are [12]:

h̄ωp = 9.02 eV, h̄γ = 0.071 eV, vF = 1.39μm/s, D = 1.90 · 108μm2/s.

The main numerical problem of simulating the non-local response is the large difference between the longitudinal kL and 
kT transverse wavenumbers. The ratio |kL|/ |kT| can reach a value of 60 [29], while the ratio between kT and ke is only of 
about 10. For this reason, the number of matching points for the NLE case is larger than that for the LRA.

In Fig. 3, we plot the extinction cross-sections computed by means of LRA and GNOR models for a gold oblate spheroid. 
For an aspect ratio r = 2, the half-axes of the spheroid are a = 4.7 nm and b = 9.4 nm. The background medium is water 
(ne = √

εe = 1.33). For the case of an oblate spheroid (a < b), the discrete sources are distributed on the imaginary axis of 
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Fig. 4. Extinction cross sections computed by LRA and NLE for P and S polarized excitation. The geometrical parameters are r = b/a = 2 and θ0 = 90◦ . The 
background medium is water.

the spheroid [35]. The results show an increase of σ P
ext with respect to the aspect ratio r. The results show a blue shift and 

a plasmon mode damping for NLE compared to LRA [8].
In Fig. 4, we plot the extinction cross-sections computed by means of LRA and NLE models. The aspect ratio is r = 2, 

and the incident angle is θ0 = 90◦ . In this case, σ S
ext exceeds the value of σ P

ext by several orders. This is because for an 
S-polarized excitation, the electric field vector E0 is parallel with the larger axis of the spheroid, while for a P-polarized 
excitation, it is collinear with the smaller axis. Nevertheless, the blue shift and the plasmon mode damping for NLE as 
compared to LRA are apparent in both cases.

The computer model has been implemented in Fortran 90. For computations, we used a Notebook Lenovo X280 with 
Intel Core i7 8550U, 1.80GHz. The time for computing the results in Fig. 4 for a frequency domain ranging from 400 nm 
to 700 nm, with a step of 5 nm, is 137 sec. The corresponding number of Fourier harmonics is M = 2 (plus two phi-
independent for P/S polarization). This choice guarantees a plane wave approximation with a relative error of 0.032%. The 
number of matching points is K = 372, and the numbers of discrete sources are Ne = NT = NL = 75 (for each harmonic, 
the dimension of the matrix is 1860 × 375). The distribution of the matching points {�l}K

l=1 over the spheroid surface, and 
the generation of the positions of the discrete sources {zn}N

n=1 has been done via the algorithm described in [37].
In the last step of our numerical analysis, we consider the scattering by a linear dimmer. The dimer consists of two 

gold prolate spheroids with the same equivolume diameter Dp = 15 nm, placed in water. In [38], it has been found that 
for this particular scattering problem, the plasmonic resonance corresponding to LRA is more pronounced for a P-polarized 
excitation and an incident angle of θ0 = 90◦ (the incident electric field E0 is parallel to the O z axis – the axis of symmetry of 
the prolate spheroids characterized by a > b). For this reason, the incident angle is chosen as θ0 = 90◦ . The variations of the 
extinction cross-sections with respect to the aspect ratio r = a/b and the gap size d are illustrated in Figs. 5 and 6. Besides, 
the blue shift and the plasmon mode damping increase when the aspect ratio r increases, or the gap size d decreases.

Note that in the case r = 2, the half-axes of the spheroid are a = 12 nm, b = 6 nm. The time for computing the results 
shown in Fig. 6 for d = 2 nm and a frequency domain ranging from 450 nm to 750 nm, with a step of 5 nm, is 87 sec. 
The number of Fourier harmonics is M = 1 (plus two phi-independent for P/S polarization), the number of matching points 
is K = 312, and finally, the numbers of discrete sources are Ne = NT = NL = 36 (for each harmonic, the dimension of the 
matrix is 1560 × 230).

6. Conclusions

An extended numerical model of the discrete sources method including non-local effect models has been applied to 
analyze the scattering by plasmonic axisymmetric particles. In the framework of the new model, the discrete sources for 
approximating the transverse field (curl and double curl of vector potentials) and the longitudinal field (gradient of scalar 
potentials) are constructed based on the system of lowest order distributed multipoles [35]. A detailed description of the 
corresponding numerical scheme has been provided. It was demonstrated that essentially, the same scheme can be used to 
handle a single particle or a system of two particles (dimmer).

The extinction cross sections of a gold oblate spheroid and a dimer consisting of two identical metallic prolate spheroids 
have been computed in the frequency domain for different spheroid aspect ratios and gap sizes. Comparing the results 
obtained by the discrete sources method with the generalized non-local optical response model and those with the local-
response approximation, a blue shift and a plasmon mode damping have been confirmed.
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Fig. 5. Extinction cross sections vs exciting wavelength λ for different aspect ratios r. The results are computed by LRA and GNOR for a gold dimer in water 
with a gap size d = 2 nm.

Fig. 6. Extinction cross sections for different gap sizes d. The results are computed by LRA and GNOR for gold spheroids in water with an aspect ratio r = 2.
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